EFEITO DA CAFEÍNA NO DESEMPENHO FÍSICO DE ATLETAS DE DESPORTOS COLETIVOS: REVISÃO SISTEMÁTICA DA LITERATURA

Ana Fernandes, Ana Pereira, António Fernandes, Valdemar Salselas

Resumo


A cafeína é um dos suplementos mais populares consumidos por atletas devido às suas propriedades estimulantes. A presente revisão sistemática teve como objetivo verificar se o consumo de cafeína tem efeitos no desempenho físico dos atletas de desportos coletivos. A partir da metodologia PRISMA (Principais Itens para Relatar Revisões Sistemáticas e Meta-análises) foram utilizadas para a pesquisa bibliográfica as bases de dados Pubmed e Web of Science. Na pesquisa inicial foram obtidos, no total, 670 artigos, sendo que, após a aplicação dos critérios de inclusão e exclusão obteve-se uma amostra final de 19 artigos. Verificou-se que a cafeína é ergogénica para exercícios de força máxima, maioritariamente para a força dos extensores e flexores do joelho e força velocidade, predominantemente em exercícios de salto. Para tarefas de precisão e agilidade não se verificaram melhorias no desempenho com o consumo de cafeína e, para ações motoras durante jogos simulados e exercícios relacionados com resistência aeróbica não foi possível concluir se a cafeína melhora o desempenho. Estes resultados sugerem a necessidade de mais estudos de forma a avaliar o efeito do consumo de cafeina no desempenho físico dos atletas.


Palavras-chave


Cafeína, Desempenho físico, Atletas, Desportos coletivos

Texto Completo:

PDF

Referências


Abian-Vicen, J., Puente, C., Salinero, J. J., González-Millán, C., Areces, F., Muñoz, G., Muñoz-Guerra, J., & Del Coso, J. (2014). A caffeinated energy drink improves jump performance in adolescent basketball players. Amino Acids, 46(5), 1333–1341. https://doi.org/10.1007/s00726-014-1702-6

Ali, A., O’Donnell, J., Foskett, A., & Rutherfurd-Markwick, K. (2016). The influence of caffeine ingestion on strength and power performance in female team-sport players. Journal of the International Society of Sports Nutrition, 13(1), 1–9. https://doi.org/10.1186/s12970-016-0157-4

Apostolidis, A., Mougios, V., Smilios, I., Frangous, M., & Hadjicharalambous, M. (2020). Caffeine supplementation is ergogenic in soccer players independent of cardiorespiratory or neuromuscular fitness levels. Journal of the International Society of Sports Nutrition, 17(1), 1–9. https://doi.org/10.1186/s12970-020-00360-x

Aslam, S., & Emmanuel, P. (2010). Formulating a researchable question: A critical step for facilitating good clinical research. Indian Journal of Sexually Transmitted Diseases, 31(1), 47–50. https://doi.org/10.4103/0253-7184.69003

Assi, H. N., & Bottoms, L. (2014). The effects of caffeine on rugby passing accuracy while performing the Reactive Agility Test. Science and Sports, 29(5), 275–281. https://doi.org/10.1016/j.scispo.2014.07.012

Australian Institute of Sport. (2021). Supplements and Sports Food in High Performance Sport: Australian Institute of Sport Position Statement. March. https://www.ais.gov.au/__data/assets/pdf_file/0014/1000841/Position-Statement-Supplements-and-Sports-Foods-abridged_v2.pdf

Bailey, R. L., Saldanha, L. G., Gahche, J. J., & Dwyer, J. T. (2014). Estimating caffeine intake from energy drinks and dietary supplements in the United States. Nutrition Reviews, 72(S1), 9–13. https://doi.org/10.1111/nure.12138

Carr, A., Dawson, B., Schneiker, K., Goodman, C., & Lay, B. (2008). Effect of caffeine supplementation on repeated sprint running performance. Journal of Sports Medicine and Physical Fitness, 48(4), 472–478.

Cha, Y. S., Choi, S. K., Suh, H., Lee, S. N., Cho, D., & Lim, K. (2001). Effects of carnitine coingested caffeine on carnitine metabolism and endurance capacity in athletes. Journal of Nutritional Science and Vitaminology, 47(6), 378–384. https://doi.org/10.3177/jnsv.47.378

Chen, H., Chen, Y., Tung, K., Chao, H., Wang, H., Hy, C., Yc, C., Tung, K., Hh, C., & Hs, W. (2019). Effects of caffeine and sex on muscle performance and delayed-onset muscle soreness after exercise-induced muscle damage : a double-blind randomized trial. 798–805. https://doi.org/10.1152/japplphysiol.01108.2018

Chia, J. S., Barrett, L. A., Chow, J. Y., & Burns, S. F. (2017). Effects of Caffeine Supplementation on Performance in Ball Games. In Sports Medicine (Vol. 47, Issue 12). https://doi.org/10.1007/s40279-017-0763-6

Davis, J. M., Zhao, Z., Stock, H. S., Mehl, K. A., Buggy, J., & Hand, G. A. (2003). Central nervous system effects of caffeine and adenosine on fatigue. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 284(2 53-2), 399–404. https://doi.org/10.1152/ajpregu.00386.2002

Del Coso, J., Muñoz-Fernández, V. E., Muñoz, G., Fernández-Elías, V. E., Ortega, J. F., Hamouti, N., Barbero, J. C., & Muñoz-Guerra, J. (2012). Effects of a caffeine-containing energy drink on simulated soccer performance. PLoS ONE, 7(2), 1–8. https://doi.org/10.1371/journal.pone.0031380

Del Coso, J., Pérez-López, A., Abian-Vicen, J., Salinero, J. J., Lara, B., & Valadés, D. (2014). Enhancing physical performance in male volleyball players with a caffeine-containing energy drink. International Journal of Sports Physiology and Performance, 9(6), 1013–1018. https://doi.org/10.1123/ijspp.2013-0448

Del Coso, J., Portillo, J., Muñoz, G., Abián-Vicén, J., Gonzalez-Millán, C., & Muñoz-Guerra, J. (2013). Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition. Amino Acids, 44(6), 1511–1519. https://doi.org/10.1007/s00726-013-1473-5

Diel, P. (2020). Ca ff eine and Doping — What Have We Learned since 2004. 13–15.

Duvnjak-Zaknich, D. M., Dawson, B. T., Wallman, K. E., & Henry, G. (2011). Effect of caffeine on reactive agility time when fresh and fatigued. Medicine and Science in Sports and Exercise, 43(8), 1523–1530. https://doi.org/10.1249/MSS.0b013e31821048ab

Eaton, T. R., Potter, A., Billaut, F., Panchuk, D., Pyne, D. B., Gore, C. J., Chen, T. T., McQuade, L., & Stepto, N. K. (2016). A combination of amino acids and caffeine enhances sprint running capacity in a hot, hypoxic environment. International Journal of Sport Nutrition and Exercise Metabolism, 26(1), 33–45. https://doi.org/10.1123/ijsnem.2015-0108

Egesoy, H., & Oksuzoglu, A. Y. (2020). The acute effects of caffeine ingestion on reactive agility performance in soccer players. Progress in Nutrition, 22(3), 168–174. https://doi.org/10.23751/pn.v22i1-S.9813

Ermolao, A., Zanotto, T., Carraro, N., Fornasier, T., Zaccaria, M., Neunhaeuserer, D., & Bergamin, M. (2017). Repeated sprint ability is not enhanced by caffeine, arginine, and branched-chain amino acids in moderately trained soccer players. Journal of Exercise Rehabilitation, 13(1), 55–61. https://doi.org/10.12965/jer.1732722.361

Evans, M., Tierney, P., Gray, N., Hawe, G., Macken, M., & Egan, B. (2018). Acute ingestion of caffeinated chewing gum improves repeated sprint performance of team sport athletes with low habitual caffeine consumption. International Journal of Sport Nutrition and Exercise Metabolism, 28(3), 221–227. https://doi.org/10.1123/ijsnem.2017-0217

Filip, A., Wilk, M., Krzysztofik, M., & Del Coso, J. (2020). Inconsistency in the ergogenic effect of caffeine in athletes who regularly consume caffeine: Is it due to the disparity in the criteria that defines habitual caffeine intake? Nutrients, 12(4). https://doi.org/10.3390/nu12041087

Foskett, A., Ali, A., & Gant, N. (2009). Caffeine enhances cognitive function and skill performance during simulated soccer activity. International Journal of Sport Nutrition and Exercise Metabolism, 19(4), 410–423. https://doi.org/10.1123/ijsnem.19.4.410

Fredholm, B. B., Bättig, K., Holmén, J., Nehlig, A., & Zvartau, E. E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacological Reviews, 51(1), 83–133.

Gallo-Salazar, C., Areces, F., Abián-Vicén, J., Lara, B., Salinero, J. J., Gonzalez-Millán, C., Portillo, J., Muñoz, V., Juarez, D., & Del Coso, J. (2015). Enhancing physical performance in elite junior tennis players with a caffeinated energy drink. International Journal of Sports Physiology and Performance, 10(3), 305–310. https://doi.org/10.1123/ijspp.2014-0103

Gant, N., Ali, A., & Foskett, A. (2010). The influence of caffeine and carbohydrate coingestion on simulated soccer performance. International Journal of Sport Nutrition and Exercise Metabolism, 20(3), 191–197. https://doi.org/10.1123/ijsnem.20.3.191

Germaine, M., Collins, K., & Shortall, M. (2019). The Effect of Caffeine Ingestion and Carbohydrate Mouth Rinse on High-Intensity Running Performance. Sports, 7(3), 63. https://doi.org/10.3390/sports7030063

Giráldez-Costas, V., González-García, J., Lara, B., Coso, J. Del, Wilk, M., & Salinero, J. J. (2020). Caffeine Increases Muscle Performance during a Bench Press Training Session. Journal of Human Kinetics, 74(1), 185–193. https://doi.org/10.2478/hukin-2020-0024

Glaister, M., Stephen, D. P., Paul, F., R. Pedlar, C., Pattison, J. R., & McInnes, G. (2012). Caffeine and Spriting Performance: Dose responses and Efficacy. 26(4), 1001–1005.

Grgic, J., Garofolini, A., Pickering, C., Duncan, M. J., Tinsley, G. M., & Del Coso, J. (2020). Isolated effects of caffeine and sodium bicarbonate ingestion on performance in the Yo-Yo test: A systematic review and meta-analysis. Journal of Science and Medicine in Sport, 23(1), 41–47. https://doi.org/10.1016/j.jsams.2019.08.016

Grgic, J., & Pickering, C. (2019). The effects of caffeine ingestion on isokinetic muscular strength: A meta-analysis. Journal of Science and Medicine in Sport, 22(3), 353–360. https://doi.org/10.1016/j.jsams.2018.08.016

Grgic, J., Pickering, C., Bishop, D. J., Schoenfeld, B. J., Mikulic, P., & Pedisic, Z. (2020). CYP1A2 genotype and acute effects of caffeine on resistance exercise, jumping, and sprinting performance. Journal of the International Society of Sports Nutrition, 17(1), 1–11. https://doi.org/10.1186/s12970-020-00349-6

Guerra, M. A., Caldas, L. C., De Souza, H. L., Vitzel, K. F., Cholewa, J. M., Duncan, M. J., & Guimarães-Ferreira, L. (2018). The acute effects of plyometric and sled towing stimuli with and without caffeine ingestion on vertical jump performance in professional soccer players. Journal of the International Society of Sports Nutrition, 15(1), 3–9. https://doi.org/10.1186/s12970-018-0258-3

Guest, N. S., VanDusseldorp, T. A., Nelson, M. T., Grgic, J., Schoenfeld, B. J., Jenkins, N. D. M., Arent, S. M., Antonio, J., Stout, J. R., Trexler, E. T., Smith-Ryan, A. E., Goldstein, E. R., Kalman, D. S., & Campbell, B. I. (2021). International society of sports nutrition position stand: caffeine and exercise performance. Journal of the International Society of Sports Nutrition, 18(1), 1–37. https://doi.org/10.1186/s12970-020-00383-4

Guttierres, A. P. M., Natali, A. J., Alfenas, R. de C. G., & Marins, J. C. B. (2009). Efeito ergogênico de uma bebida esportiva cafeinada sobre a performance em testes de habilidades específicas do futebol. Revista Brasileira de Medicina Do Esporte, 15(6), 450–454. https://doi.org/10.1590/s1517-86922009000700010

Harrad, D., Pansani, T., & Galvão, T. (2015). Principais itens para relatar Revisões sistemáticas e Meta-análises: A recomendação PRISMA. Epidemiologia e Serviços de Saúde, 24(2), 335–342. https://doi.org/10.5123/s1679-49742015000200017

Hulton, A. T., Vitzel, K., Doran, D. A., & Maclaren, D. P. M. (2020). Addition of Caffeine to a Carbohydrate Feeding Strategy Prior to Intermittent Exercise. International Journal of Sports Medicine, 41(9), 603–609. https://doi.org/10.1055/a-1121-7817

Jacobson, B. H., Weber, M. D., Claypool, L., & Hunt, L. E. (1992). Effect of caffeine on maximal strength and power in élite male athletes. British Journal of Sports Medicine, 26(4), 276–280. https://doi.org/10.1136/bjsm.26.4.276

Jodra, P., Lago-Rodríguez, A., Sánchez-Oliver, A. J., López-Samanes, A., Pérez-López, A., Veiga-Herreros, P., San Juan, A. F., & Domínguez, R. (2020). Effects of caffeine supplementation on physical performance and mood dimensions in elite and trained-recreational athletes. Journal of the International Society of Sports Nutrition, 17, 1–11. https://doi.org/10.1186/s12970-019-0332-5

Lara, B., Gonzalez-Millán, C., Salinero, J. J., Abian-Vicen, J., Areces, F., Barbero-Alvarez, J. C., Muñoz, V., Portillo, L. J., Gonzalez-Rave, J. M., & Del Coso, J. (2014). Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids, 46(5), 1385–1392. https://doi.org/10.1007/s00726-014-1709-z

Lee, C., Cheng, C., Astorino, T. A., Lee, C., Huang, H., & Chang, W. (2014). Effects of carbohydrate combined with caffeine on repeated sprint cycling and agility performance in female athletes. 1–12.

Letzelter, H., & Letzelter, M. (1986). Krafttraining: Theorie, methoden, praxis. Rowohlt Taschenbuch.

Mark, G., Howatson, G., Abraham, C. S., Lockey, R. A., Goodwin, J. E., Foley, P., & Mcinnes, G. (2008). Caffeine supplementation and multiple sprint running performance. Medicine and Science in Sports and Exercise, 40(10), 1835–1840. https://doi.org/10.1249/MSS.0b013e31817a8ad2

Marriott, M., Krustrup, P., & Mohr, M. (2015). Ergogenic effects of caffeine and sodium bicarbonate supplementation on intermittent exercise performance preceded by intense arm cranking exercise. Journal of the International Society of Sports Nutrition, 12(1), 1–8. https://doi.org/10.1186/s12970-015-0075-x

Matthew, T., Jill M, H., Jenny C, C., Darren L, D., & Gavin J, B. (2013). The Effect of Caffeine on Maximal Oxygen Uptake and Vertical Jump Performance in Male Basketball Players. 382–387.

Maughan, R. J., Burke, L. M., Dvorak, J., Larson-Meyer, D. E., Peeling, P., Phillips, S. M., Rawson, E. S., Walsh, N. P., Garthe, I., Geyer, H., Meeusen, R., Van Loon, L. J. C., Shirreffs, S. M., Spriet, L. L., Stuart, M., Vernec, A., Currell, K., Ali, V. M., Budgett, R. G., … Engebretsen, L. (2018). IOC consensus statement: Dietary supplements and the high-performance athlete. British Journal of Sports Medicine, 52(7), 439–455. https://doi.org/10.1136/bjsports-2018-099027

McNaughton, L. R. (1986). The influence of caffeine ingestion on incremental treadmill running. 20(3), 109–112.

Mielgo-Ayuso, J., Calleja-Gonzalez, J., Del Coso, J., Urdampilleta, A., León-Guereño, P., & Fernández-Lázaro, D. (2019). Caffeine supplementation and physical performance, muscle damage and perception of fatigue in soccer players: A systematic review. Nutrients, 11(2), 1–15. https://doi.org/10.3390/nu11020440

Mohr, M., Nielsen, J. J., & Bangsbo, J. (2011). Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation. Journal of Applied Physiology, 111(5), 1372–1379. https://doi.org/10.1152/japplphysiol.01028.2010

Nehlig, A. (2018). Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacological Reviews, 70(2), 384–411. https://doi.org/10.1124/pr.117.014407

Nishitsuji, K., Watanabe, S., Xiao, J., Nagatomo, R., Ogawa, H., Tsunematsu, T., Umemoto, H., Morimoto, Y., Akatsu, H., Inoue, K., & Tsuneyama, K. (2018). Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-34571-9

Pasman, W. ., Van Baak, M. ., Jeukendrup, A. ., & Haan, A. (1995). The Effect of Different Dosages of Caffeine on Endurance Performance Time. 16, 225–230.

Pataky, M. W., Womack, C. J., Saunders, M. J., Goffe, J. L., D’Lugos, A. C., El-Sohemy, A., & Luden, N. D. (2016). Caffeine and 3-km cycling performance: Effects of mouth rinsing, genotype, and time of day. Scandinavian Journal of Medicine and Science in Sports, 26(6), 613–619. https://doi.org/10.1111/sms.12501

Paton, C. D., Hopkins, W. G., & Vollebregt, L. (2001). Sprints in Team-Sport Athletes. Medicine & Science in Sports & Exercise, 33, 822–825.

Pérez-López, A., Salinero, J. J., Abian-Vicen, J., Valadés, D., Lara, B., Hernandez, C., Areces, F., González, C., & Del Coso, J. (2015). Caffeinated energy drinks improve volleyball performance in elite female players. Medicine and Science in Sports and Exercise, 47(4), 850–856. https://doi.org/10.1249/MSS.0000000000000455

Pickering, C., & Kiely, J. (2018). Are the Current Guidelines on Caffeine Use in Sport Optimal for Everyone? Inter-individual Variation in Caffeine Ergogenicity, and a Move Towards Personalised Sports Nutrition. Sports Medicine, 48(1), 7–16. https://doi.org/10.1007/s40279-017-0776-1

Poire, B., Killen, L. G., Green, J. M., & Neal, E. K. O. (2019). Effects of Caffeine on Tennis Serve Accuracy. 26.

Puente, C., Abián-Vicén, J., Salinero, J. J., Lara, B., Areces, F., & Del Coso, J. (2017). Caffeine Improves Basketball Performance in Experienced Basketball Players. 1–13. https://doi.org/10.3390/nu9091033

Ranchordas, M. K., Pratt, H., Parsons, M., Parry, A., Boyd, C., & Lynn, A. (2019). Effect of caffeinated gum on a battery of rugby-specific tests in trained university-standard male rugby union players. Journal of the International Society of Sports Nutrition, 16(1), 1–9. https://doi.org/10.1186/s12970-019-0286-7

Rodrigues, M. (2000). O treino da Força nas condições da aula de Educação física. Universidade do Porto.

Schneiker, K. T., Bishop, D., Dawson, B., & Hackett, L. P. (2006). Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes. Medicine and Science in Sports and Exercise, 38(3), 578–585. https://doi.org/10.1249/01.mss.0000188449.18968.62

Shabir, A., Hooton, A., Tallis, J., & Higgins, M. F. (2018). The influence of caffeine expectancies on sport, exercise, and cognitive performance. Nutrients, 10(10), 1–21. https://doi.org/10.3390/nu10101528

Spineli, H., Pinto, M. P., Dos Santos, B. P., Lima-Silva, A. E., Bertuzzi, R., Gitaí, D. L. G., & de Araujo, G. G. (2020). Caffeine improves various aspects of athletic performance in adolescents independent of their 163 C > A CYP1A2 genotypes. Scandinavian Journal of Medicine and Science in Sports, 30(10), 1869–1877. https://doi.org/10.1111/sms.13749

Steele, E., Bialocerkowski, A., & Grimmer, K. (2003). The postural effects of load carriage on young people – a systematic review. 7, 1–7.

Stojanović, E., Scanlan, A. T., Milanović, Z., Fox, J. L., Stanković, R., & Dalbo, V. J. (2021). Acute caffeine supplementation improves jumping, sprinting, and change-of-direction performance in basketball players when ingested in the morning but not evening. European Journal of Sport Science, 0(0), 1–11. https://doi.org/10.1080/17461391.2021.1874059

Stuart, G. R., Hopkins, W. G., Cook, C., & Cairns, S. P. (2005). Multiple effects of caffeine on simulated high-intensity team-sport performance. Medicine and Science in Sports and Exercise, 37(11), 1998–2005. https://doi.org/10.1249/01.mss.0000177216.21847.8a

Tan, Z. S., Burns, S. F., Pan, J. W., & Kong, P. W. (2019). Journal of Exercise Science & Fitness Effect of caffeine ingestion on free-throw performance in college basketball players. Journal of Exercise Science & Fitness, 18(2), 62–67. https://doi.org/10.1016/j.jesf.2019.12.002

Tarnopolsky, M. A. (2011). Caffeine and creatine use in sport. Annals of Nutrition and Metabolism, 57(SUPPL. 2), 1–8. https://doi.org/10.1159/000322696

Waller, G., Dolby, M., Steele, J., & Fisher, J. P. (2020). A low caffeine dose improves maximal strength, but not relative muscular endurance in either heavier-or lighter-loads, or perceptions of effort or discomfort at task failure in females. PeerJ, 2020(3). https://doi.org/10.7717/peerj.9144

Wang, C., Zhu, Y., Dong, C., Zhou, Z., & Zheng, X. (2020). Effects of various doses of caffeine ingestion on intermittent exercise performance and cognition. Brain Sciences, 10(9), 1–12. https://doi.org/10.3390/brainsci10090595

Wellington, B. M., Leveritt, M. D., & Kelly, V. G. (2017). The effect of caffeine on repeat-high-intensity-effort performance in rugby league players. International Journal of Sports Physiology and Performance, 12(2), 206–210. https://doi.org/10.1123/ijspp.2015-0689

Wilk, M., Filip, A., Krzysztofik, M., Maszczyk, A., & Zajac, A. (2019). The acute effect of various doses of caffeine on power output and velocity during the bench press exercise among athletes habitually using caffeine. Nutrients, 11(7). https://doi.org/10.3390/nu11071465




DOI: https://doi.org/10.46691/es.v1i30634

Apontadores

  • Não há apontadores.